Everything* you wanted to know about LHCb but were afraid to ask

* Disclaimer: OK not EVERYTHING.

Sneha Malde LHCb Collaboration

Sneha Malde

New physics

Historically many "New Physics" (of the time) discoveries have been made by flavour physics

FIG. 3. Angular distribution in three mass ranges for events with $\cos\theta > 0.9995$.

Entirely unexpected discoveries can lead to profound changes in understanding

- Observation of B⁰ mixing in 1987
- Implied that m_t > 50 GeV
- Top eventually discovered in 1995 with mass ~175 GeV
- Low energy phenonmena is sensitive to heavy particles

Still plenty to learn about QCD

The Pentaquarks are found just below threshold by amounts that are plausible hadron-hadron binding energies.

They are narrow.

While it points to the molecular interpretation further experimental and theoretical required to confirm this.

CP violation

Every thing remain consistent with the SM picture

How does that relate to other information which tells us that NP must exist?

Flavour anomalies

Currently a few results are in tension with the Standard Model

LHCb

"LHCb is a forward-arm spectrometer optimized for doing B-physics"

LHCb

"LHCb is a forward-arm spectrometer optimized for doing B-physics"

Production

bb production

The majority of bb pairs are produced in the forward direction.

 1.4×10^{11} bb pairs per fb⁻¹ (Run2)

Our detector is instrumented in 2<η<5

All species produced B⁺ B⁰ B_s B_c $\Lambda_b \Sigma_b \cdots$ + charm

+ strange

+ all the ones we are yet to observe

Data sets

Data sets

Rules of thumb for scaling yields :

Due to cross section increase and trigger changes N_{2011→2018} ~ 6x N_{2011→2012}

N_{2011→2018} ~ 2x N_{2011→2016}

Data on tape: 9fb⁻¹ Run 1 ~ 3fb @ 7,8 TeV Run 2 ~ 6fb @ 13 TeV

Luminosity levelling

Operate at continuous luminosity

Beams are displaced and brought together as the proton concentration decreases.

Rate chosen to give ~1 pp collision per bunch crossing.

- Operational stability
- Constant trigger rates
- Constant multiplicity → constant detector performance
- Less integrated luminosity collected

The detector

Sneha Malde

Tracking performance

- Magnet bends the charged tracks allowing for momentum measurement
- Resolution is ~ 0.6%
- Find tracks that don't originate from the proton collision
- Typical resolutions IP ~ 40 microns

 Decay time resolution of a secondary vertex is ~ 50 fs

arXiv:1412.6352

Charged hadron identification

RICH detectors

The RICH detectors use the properties of Cherenkov radiation to separate the particles

$$\cos \theta_C = \frac{1}{n\beta} = \frac{1}{n}\sqrt{1 + \left(\frac{m}{p}\right)^2}$$

some of the first reconstructed RICH rings

Hadron PID performance

Can maintain high efficiency for low mis-ID rates

Impact of hadron PID

Sneha Malde JHEP 1210 (2012) 037

arXiv:1206.2794

Trigger

LHCb Run 2 trigger

Flexible trigger system

Low thresholds : e.g $P_T(\mu) > 1.8 \text{ GeV}$

Allows for hadronic decay triggering

Calibrations and alignment run online

Many exclusive selections

An example of data

Flavour Tagging

A number of algorithms to determine whether a neutral B meson is a particle or anti-particle at production.

Effective tagging power, $\boldsymbol{\epsilon}$ is determined

Uncertainty on timedependent asymmetries $\sigma \sim 1/\sqrt{(\epsilon N)}$

Decay mode	3	Reference
$B^0 \rightarrow D^+ D^-$	8.1 ± 0.6 %	PRL 117 261801 (2016)
B ⁰ → D* μν X (2012)	2.46 ± 0.04 %	EPJC 76 412 (2016)
$B_s \rightarrow J/\Psi KK$	4.73 ± 0.034 %	EPJC 79 (2019) 706

Flavour Tagging

Decay mode	3	Reference
$B^0 \rightarrow D^+ D^-$	8.1 ± 0.6 %	PRL 117 261801 (2016)
B ⁰ → D* μν X (2012)	2.46 ± 0.04 %	EPJC 76 412 (2016)
B _s →J/Ψ KK	4.73 ± 0.034 %	EPJC 79 (2019) 706

Sneha Malde

Charged lepton identification (µ)

Muons traverse the full detector. High identification efficiency.

Charged lepton identification (e)

- Muon and Electron tracks are different in LHCb
- Interactions with material and bremsstrahlung emission.
- Muons have better PID and trigger perfomances

Neutral particle identification (γ)

- Efficiency of detection and energy resolution for neutrals not as good as charged tracks.
- Nonetheless we can reconstruct a variety of signal decays

Neutral particle identification (π^0)

- Two categories dependent on the momentum of the π^0 .
- Resolved the two photons are identified separately.
- Merged the two photons are a single cluster → wider resolution, but lower background as the π⁰ has higher transverse energy and lower combinatorics
- Use of mass constraints where possible improves the overall resolution of the overall decay
- π^{\pm} will always be ahead of π^{0} performance

Controlling uncertainties

- Detector can easily be a source for a number of asymmetries/biases.
- Simulation is not perfect, and generating large amounts of becomes difficult
 - Active use of faster simulation techniques
- Regular magnet polarity reversal averages the small differences between the halves of the detector
- Data-driven corrections and measurements for detection asymmetries, efficiencies is key

Let's take a look at some current results*

* New results will be shown in other talks

Sneha Malde

CP Violation : γ

- Large experimental uncertainties.
- ~ Factor 4 reduction in uncertainty in the last 10 years. Many analyses still Run1 only
- Prominent large visible CPV in many analyses.

CP Violation : ϕ_s

Requires a time-dependent angular analysis

- Competitive precision (LHCb better)
- An event from LHCb is worth more
- LHCb can also explore a wider range of modes e.g Bs →J/ψ ππ

CP violation : Charm

Charm mixing and CPV

Run2

New result on A_r will be shown on Friday

contours hold 68%, 95% CL

-0.3 -0.2 -0.1

 $\frac{0.2 \quad 0.3}{|q/p| - 1}$

0.2

0.1

0

Rare Decays: $B_s \rightarrow \mu \mu$

- FCNC are forbidden in the SM
- $B \rightarrow \mu^+ \mu^-$ decays are a powerful probe of the SM
- 2011 2016 data

$$\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (3.0 \pm 0.6 \substack{+ 0.3 \\ - 0.2}) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.5 \substack{+ 1.2 \\ - 1.0 \\ - 0.1}) \times 10^{-10}$$

Effective lifetime $\tau^{\rm eff}_{B^0_s \rightarrow \mu^+ \mu^-} = 2.04 \pm 0.44 \pm 0.05 ~\rm ps$

LFU:R_K

New particles at tree level can compete with SM loop diagrams

LHCb can do more

Low mass spin-1 boson searches

New Result

- Search for dark photon using full Run 2 dataset
- Limts set on kinematic mixing parameter between the photon and dark photon
- Prompt and displaced decays considered
- World Best limit set on prompt production in range 10.6<m< 30 GeV

We look forward to the results using the full Run 1 and Run 2 dataset

What comes next?

- With our existing detector, time to double yields becomes too long.
- Running at higher instantaneous luminosity not a good idea:
- Moving to higher occupancy leads to degraded performance
- Limited radiation hardness of trackers
- Hadronic decays will not benefit much

LHCb upgrade

Trigger in the upgrade

LHCb Upgrade Trigger Diagram

- Run I & II : Separate out signal from background
- Run 3: 24% of events will contain charm & 2% of events will contain beauty
- Separating the signal we want, from the signal we don't
- Volume of data also a challenge
- Output trigger candidates and related primary vertices for exclusive triggers

LHCb Upgrade vs Belle II

	Observable	Current LHCb	LHCb 2025	Belle II
	EW Penguins			
0005	$R_K (1 < q^2 < 6 \text{ GeV}^2 c^4)$	0.1 [274]	0.025	0.036
	R_{K^*} $(1 < q^2 < 6 \text{GeV}^2 c^4)$	0.1 [275]	0.031	0.032
	$R_{\phi}, R_{pK}, R_{\pi}$	-	0.08,0.06,0.18	-
	CKM tests			
twaan	γ , with $B_s^0 \rightarrow D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	-
LWEEN	γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [167]	1.5°	1.5°
	$\sin 2\beta$, with $B^0 \rightarrow J/\psi K_s^0$	0.04 609	0.011	0.005
	ϕ_s , with $B_s^0 \rightarrow J/\psi \phi$	49 mrad [44]	14 mrad	_
	ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	170 mrad [49]	35 mrad	_
	$\phi_s^{s\bar{s}s}$, with $B_s^0 \rightarrow \phi \phi$	154 mrad [94]	39 mrad	_
ndes.	a_{sl}^s	33×10^{-4} [211]	10×10^{-4}	_
	$ V_{ub} / V_{cb} $	6% [201]	3%	1%
the	$B^0_s, B^0{ ightarrow}\mu^+\mu^-$			
gher	$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_
r	$\tau_{B^0_c \rightarrow \mu^+ \mu^-}$	22% [264]	8%	_
1	$S_{\mu\mu}$		-	-
	$b \rightarrow c \ell^- \bar{\nu_l}$ LUV studies			
	$R(D^*)$	0.026 [215, 217]	0.0072	0.005
د	$R(J/\psi)$	0.24 [220]	0.071	_
- 	Charm			
dy at	$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	1.7×10^{-4}	5.4×10^{-4}
	$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	3.5×10^{-4}
	$x \sin \phi$ from $D^0 \rightarrow K^+ \pi^-$	13×10^{-4} [228]	3.2×10^{-4}	4.6×10^{-4}
	$x \sin \phi$ from multibody decays	-	$(K3\pi)$ 4.0 × 10 ⁻⁵	$(K_s^0 \pi \pi) 1.2 \times 10^{-4}$

What LHCb shows

There will be competition between these two experiments

Fully charged modes LHCb will have the advantage of higher signal and lower background

All B species are available to study at LHCb

LHCb Upgrade vs Belle II

What Belle II shows

Choice of modes is dominated by final states including neutrals and missing particles, where Belle II has comparative strengths

Observables	Expected the. accu-	Expected	Facility (2025)
	racy	exp. uncertainty	
UT angles & sides			
φ ₁ [°]	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	***	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
V _{cb} excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \rightarrow \phi K^0)$	***	0.02	Belle II
$S(B \rightarrow \eta' K^0)$	***	0.01	Belle II
$\mathcal{A}(B \rightarrow K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$\mathcal{A}(B \rightarrow K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic			
$\mathcal{B}(B \to \tau \nu)$ [10 ⁻⁶]	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶]	**	7%	Belle II
$R(B \rightarrow D\tau\nu)$	***	3%	Belle II
$R(B \rightarrow D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguins			
$\mathcal{B}(B \rightarrow X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \rightarrow X_{*,d}\gamma)$ [10 ⁻²]	***	0.005	Belle II
$S(B \rightarrow K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \rightarrow \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) [10^{-6}]$	***	15%	Belle II
$R(B \rightarrow K^*\ell\ell)$	***	0.03	Belle II/LHCb
Charm			
$\mathcal{B}(D_s \to \mu\nu)$	***	0.9%	Belle II
$\mathcal{B}(D_s \to \tau \nu)$	***	2%	Belle II
$A_{CP}(D^0 \to K_{S}^0 \pi^0) \ [10^{-2}]$	**	0.03	Belle II
$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	***	0.03	Belle II
$A_{CP}(D^+ \to \pi^+ \pi^0) [10^{-2}]$	**	0.17	Belle II
Tau			
$\tau \rightarrow \mu \gamma [10^{-10}]$	***	< 50	Belle II
$\tau \rightarrow e \gamma [10^{-10}]$	***	< 100	Belle II
$\tau \rightarrow \mu \mu \mu [10^{-10}]$	***	< 3	Belle II/LHCb
$r \rightarrow \mu\mu\mu$ [10]		< 3	Delle H/LHOD

Upgrade II

- Beyond 2030 HL-LHC
- Upgrade II will collect 300fb⁻¹ to fully exploit HL-LHC
- All subsystems being further upgraded, use of new technology to keep high performance
- Use of timing information to mitigate pile-up – all collisions in a bunch crossing don't occur at the same time

Upgrade II

Response to this project has been very positive. EoI and physics case have been submitted

The LHCb Upgrade II was approved by the LHCC to proceed to a framework TDR

European Strategy Briefing Document: Strong support for project in the document (released last week)

"The LHCb Upgrade II... will enable a wide range of flavour observables to be determined at HL-LHC with unprecedented precision"

Upgrade II physics reach

$\times 10^{-4}$	±	5.4	±	19	±28.0	× 10 ⁻⁵	LHCb
							Current
	±1	1.5			±35.0	× 10 ⁻⁵	Belle II
	_					_	ATLAS/CMS
$\times 10^{-4}$	±1	1.5	±1	14	±4.3 >	× 10 ⁻⁵	LHCb
							2025
			±	22			
$\pm 3.0 \times 10^{-4}$ ±0		0.35 ±4		$\pm 1.0 \times 10^{-5}$			
	γ[°]		ϕ_s [mrac	/]	AΓ		HL-LHC
						I HCh	
±10.0		±2.6		±90			
						Current	
±3.6 ±2.2		±0.50 ±0.72		ATLAS/CMS ±34 LHCb		Belle II	
						ATLAS/CMS	
						LHCb	
						2025	
				±	21		
±0.	70	±0	.20	±	10		
R _K [%]		R(D*)[9	6]	$\frac{B(B^0 \rightarrow \mu^+ \mu^-)}{B(B^0 \rightarrow \mu^+ \mu^-)}$	[%]	HL-LHC	
	$\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-4}$ $\pm 10^{-4}$		$ \begin{array}{c c} \times 10^{-4} & \pm 5.4 \\ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

← Upgrade II

← Upgrade II

CERN-LHCC-2018-027

Conclusions

- The precision that will be reached by LHCb in a number of measurements will continue to be more precise
- New channels will be accessed
- New Physics?

Tracking at LHCb

- Long Tracks traverse all tracking detectors before and just after magnet
- Highest quality for physics analysis good IP resolution and momentum resolution
- Other track types are also employed for analysis specific reasons (e.g long lived particles like K_s and Λ also use downstream tracks